JEE MAIN - Physics (2020 - 2nd September Morning Slot - No. 13)

A bead of mass m stays at point P(a, b) on a wire bent in the shape of a parabola y = 4Cx2 and rotating with angular speed $$\omega $$ (see figure). The value of $$\omega $$ is (neglect friction) : JEE Main 2020 (Online) 2nd September Morning Slot Physics - Circular Motion Question 55 English
$$2\sqrt {2gC} $$
$$2\sqrt {gC} $$
$$\sqrt {{{2gC} \over {ab}}} $$
$$\sqrt {{{2g} \over C}} $$

Explanation


y = 4Cx2

$$ \Rightarrow $$ $$\frac{dy}{dx} $$ = tan $$\theta $$ = 8Cx

At P, tan θ = 8Ca

For steady circular motion

mg sinθ = mω2acosθ

$$ \Rightarrow $$ tan $$\theta $$ = $$\frac{\omega^{2} a}{g} $$

$$ \Rightarrow $$ 8Ca $$ \times $$ g = ω2$$ \times $$a

$$ \Rightarrow $$ $$\omega $$ = $$\sqrt{8gC} $$

$$ \Rightarrow $$ $$\omega $$ = $$2\sqrt {2gC} $$

Comments (0)

Advertisement