JEE MAIN - Physics (2020 - 2nd September Evening Slot - No. 22)
A particle of mass m is moving along the x-axis
with initial velocity $$u\widehat i$$. It collides elastically
with a particle of mass 10 m at rest and then
moves with half its initial kinetic energy (see
figure). If $$\sin {\theta _1} = \sqrt n \sin {\theta _2}$$ then value of n is
________.
_2nd_September_Evening_Slot_en_22_1.png)
_2nd_September_Evening_Slot_en_22_1.png)
Answer
10
Explanation
_2nd_September_Evening_Slot_en_22_2.png)
$${1 \over 2}mv_1^2 = {1 \over 2}\left( {{1 \over 2}m{u^2}} \right)$$
$$ \Rightarrow $$ $$v_1^2 = {{{u^2}} \over 2}$$
$$ \Rightarrow $$ $${v_1} = {u \over {\sqrt 2 }}$$ ......(1)
Also collision is elastic : ki = kf
$${{1 \over 2}m{u^2} = {1 \over 2}mv_1^2 + {1 \over 2}\left( {10m} \right)v_2^2}$$
$$ \Rightarrow $$ $${{1 \over 2} \times {1 \over 2}m{u^2} = {1 \over 2}\left( {10m} \right)v_2^2}$$
$$ \Rightarrow $$ $${v_2^2 = {{{u^2}} \over {20}}}$$
$$ \Rightarrow $$ $${v_2} = {u \over {\sqrt {20} }}$$
By momentum conservation along y :
m1v1sin $$\theta $$1 = m2v2sin $$\theta $$2
$$ \Rightarrow $$ mv1sin $$\theta $$1 = 10mv2sin $$\theta $$2
$$ \Rightarrow $$ $${u \over {\sqrt 2 }}$$sin $$\theta $$1 = 10 $$ \times $$ $${u \over {\sqrt {20} }}$$sin $$\theta $$2
$$ \Rightarrow $$ sin $$\theta $$1 = $$\sqrt {10} $$ sin $$\theta $$2
$$ \therefore $$ n = 10
Comments (0)
