JEE MAIN - Physics (2019 - 9th January Morning Slot - No. 7)

A particle is moving with a velocity

$$\overrightarrow v \, = K(y\widehat i + x\widehat j),$$ where K is a constant.

The general equation for its path is :
y = x2 + constant
y2 = x + constant
y2 = x2 + constant
xy = constant

Explanation

Given,

$$\overrightarrow v = K\left( {y\widehat i + x\widehat j} \right)$$

$$ \therefore $$   Velocity in x direction,

$${v_x} = {{dx} \over {dt}} = Ky\,$$   . . . . . (1)

Velocity in y direction,

vy = $$\,{{dy} \over {dt}}$$ = Kx . . . . . . . (2)

$$ \therefore $$   $${{\,{{dy} \over {dt}}} \over {{{dx} \over {dt}}}} = {{Kx} \over {Ky}}$$

$$ \Rightarrow $$   $${{dy} \over {dx}} = {x \over y}$$

$$ \Rightarrow $$   ydy $$=$$ xdx

Integrating both sides we get,

$$\int {ydx} = \int {xdx} $$

$$ \Rightarrow $$   $${{{y^2}} \over 2} = {{{x^2}} \over 2} + c$$

$$ \Rightarrow $$   $${y^2} = {x^2} + 2c$$

$$ \therefore $$   General equation,

y2 = x2 + constant.

Comments (0)

Advertisement