JEE MAIN - Physics (2019 - 9th January Morning Slot - No. 19)
_9th_January_Morning_Slot_en_19_1.png)
Explanation
_9th_January_Morning_Slot_en_19_2.png)
We start by applying Kirchhoff's current law at point C in the circuit:
$$i_1+i_2=i$$
where $i_1$ and $i_2$ are the currents flowing through resistors R1 and R2 respectively, and i is the current flowing through the battery and resistor R3.
Next, we use Ohm's law to express $i_1$ and $i_2$ in terms of the voltages at points A, B, and C:
$$i_1=\frac{V_A-V_C}{R_1}=\frac{20-V_C}{2}$$
$$i_2=\frac{V_B-V_C}{R_2}=\frac{10-V_C}{4}$$
where $R_1$ and $R_2$ are the resistances of resistors R1 and R2 respectively.
Substituting these expressions into the first equation, we get:
$$\frac{20-V_C}{2}+\frac{10-V_C}{4}=i$$
We then use Ohm's law again to express i in terms of the voltages at points C and earth :
$$i=\frac{V_C-V}{R_3}=\frac{V_C-0}{2}=\frac{V_C}{2}$$
Substituting this expression into the previous equation, we get:
$$\frac{20-V_C}{2}+\frac{10-V_C}{4}=\frac{V_C}{2}$$
Simplifying this equation, we get:
$$40-2V_C+10-V_C=2V_C$$
$$50=5V_C$$
$$V_C=10\text{ V}$$
Finally, we use Ohm's law to find the value of the current i:
$$i=\frac{V_C}{2}=\frac{10}{2}=5\text{ A}$$
Therefore, the current flowing through the circuit is 5 A.
Comments (0)
