JEE MAIN - Physics (2019 - 9th January Evening Slot - No. 8)

Charge is distributed within a sphere of radius R with a volume charge density $$\rho \left( r \right) = {A \over {{r^2}}}{e^{ - {{2r} \over s}}},$$ where A and a are constants. If Q is the total charge of this charge distribution, the radius R is :
a log $$\left( {1 - {Q \over {2\pi aA}}} \right)$$
$${a \over 2}$$ log $$\left( {{1 \over {1 - {Q \over {2\pi aA}}}}} \right)$$
a log $$\left( {{1 \over {1 - {Q \over {2\pi aA}}}}} \right)$$
$${a \over 2}$$ log $$\left( {1 - {Q \over {2\pi aA}}} \right)$$

Explanation

JEE Main 2019 (Online) 9th January Evening Slot Physics - Electrostatics Question 185 English Explanation

Volume of this spherical layer,

dv = (4$$\pi $$r2)dr

charge present in this layer,

dq = $$\rho $$ (4$$\pi $$r2 dr)

= $${A \over {{r^2}}}{e^{ - {{2r} \over a}}}\,\,\left( {4\pi {r^2}dr} \right)$$

= $$A\,{e^{ - {{2r} \over a}}}\left( {4\pi dr} \right)$$

$$ \therefore $$  Total charge in the sphere,

Q= $$\int\limits_0^R {4\pi A{e^{ - {{2r} \over a}}}} \,dr$$

= 4$$\pi $$A$$\int\limits_0^R {{e^{ - {{2r} \over a}}}} \,dr$$

= 4$$\pi $$A$$\left[ {{{{e^{ - {{2r} \over a}}}} \over { - {2 \over a}}}} \right]_0^R$$

= 4$$\pi $$A $$\left( { - {a \over 2}} \right)\left( {{e^{ - {{2R} \over a}}} - 1} \right)$$

$$ \therefore $$  Q = 2$$\pi $$aA $$\left( {1 - {e^{ - {{2R} \over a}}}} \right)$$

$$ \Rightarrow $$  $${1 - {e^{ - {{2R} \over a}}}}$$ = $${Q \over {2\pi aA}}$$

$$ \Rightarrow $$  $${{e^{ - {{2R} \over a}}}}$$ = 1 $$-$$ $${Q \over {2\pi aA}}$$

$$ \Rightarrow $$  $${e^{{{2R} \over a}}}$$ = $${1 \over {1 - {Q \over {2\pi aA}}}}$$

$$ \Rightarrow $$  $${{2R} \over a} = \log \left( {{1 \over {1 - {Q \over {2\pi aA}}}}} \right)$$

$$ \Rightarrow $$  R = $${a \over 2}$$ log $$\left( {{1 \over {1 - {Q \over {2\pi aA}}}}} \right)$$

Comments (0)

Advertisement