JEE MAIN - Physics (2019 - 9th January Evening Slot - No. 20)
Two point charges q1$$\left( {\sqrt {10} \mu C} \right)$$ and q2($$-$$ 25 $$\mu $$C) are placed on the x-axis at x = 1 m and x = 4 m respectively. The electric field (in V/m) at a point y = 3 m on y-axis is,
[take $${1 \over {4\pi { \in _0}}}$$ = 9 $$ \times $$ 109 Nm2C$$-$$2]
[take $${1 \over {4\pi { \in _0}}}$$ = 9 $$ \times $$ 109 Nm2C$$-$$2]
$$\left( {63\widehat i - 27\widehat j} \right) \times {10^2}$$
$$\left( { - 63\widehat i + 27\widehat j} \right) \times {10^2}$$
$$\left( {81\widehat i - 81\widehat j} \right) \times {10^2}$$
$$\left( { - 81\widehat i + 81\widehat j} \right) \times {10^2}$$
Explanation
_9th_January_Evening_Slot_en_20_1.png)
Electric field due to $$\sqrt {10} \,\mu C$$ charge :
_9th_January_Evening_Slot_en_20_2.png)
$$\overrightarrow {{E_1}} = - $$ E1 sin$$\theta $$1 $$\widehat i$$ + E1 cos$$\theta $$1 $$\widehat j$$
Where,
E1 $$ = {1 \over {4\pi {\varepsilon _0}}} \times {{\left| {{q_1}} \right|} \over {{r_1}^2}}$$
$$ = 9 \times {10^9} \times {{\sqrt {10} \times {{10}^{ - 6}}} \over {{{\left( {\sqrt {{1^2}} + {3^2}} \right)}^2}}}$$
$$ = {{9 \times {{10}^3}} \over {\sqrt {10} }}\,v/m$$
sin $$\theta $$1 $$=$$ $${1 \over {\sqrt {10} }}$$
and cos$$\theta $$1 = $${3 \over {\sqrt {10} }}$$
$$ \therefore $$ $$\overrightarrow {{E_1}} = {{9 \times {{10}^3}} \over {\sqrt {10} }}\,\left( { - {1 \over {10}}\widehat i + {3 \over {\sqrt {10} }}\widehat j} \right)$$
$$ = 9 \times {10^2}\left( { - \widehat i + 3\widehat j} \right)$$
Electric field due to $$-$$ 25 $$\mu $$C charge,
_9th_January_Evening_Slot_en_20_3.png)
$$\overrightarrow {{E_2}} = $$ E2 sin$$\theta $$2$$\widehat i$$ $$-$$ E2 cos$$\theta $$2 $$\widehat j$$
where
E2 $$ = {1 \over {4\pi {\varepsilon _0}}} \times {{\left| {{9_2}} \right|} \over {r_2^2}}$$
$$ = 9 \times {10^9} \times {{25 \times {{10}^{ - 6}}} \over {{{\left( {\sqrt {{4^2} + {3^2}} } \right)}^2}}}$$
$$ = 9 \times {10^3}$$ V/m
sin$$\theta $$2 = $${4 \over 5}$$
and cos$$\theta $$2 = $${3 \over 5}$$
$$ \therefore $$ $$\overrightarrow {{E_2}} = 9 \times {10^3}\,\,\left( {{4 \over 5}\widehat i - {3 \over 5}\widehat j} \right)$$
$$ = 18 \times {10^2}\left( {4\widehat i - 3\widehat j} \right)$$
$$ \therefore $$ Net electric field,
$$\overrightarrow E $$ = $${\overrightarrow E _1}$$ + $${\overrightarrow E _2}$$
$$ = \left( {63\widehat i - 27\widehat j} \right) \times {10^2}\,\,V/m$$
Comments (0)
