JEE MAIN - Physics (2019 - 8th April Morning Slot - No. 25)
Explanation
When rubber cord is stretched, then it stores potential energy and when released, this potential energy is given to the stone as kinetic energy.
So, potential energy of stretched cord = kinetic energy of stone
$$ \Rightarrow {1 \over 2}Y{\left( {{{\Delta L} \over L}} \right)^2}A\,.\,L = {1 \over 2}m{v^2}$$
Here, $$\Delta$$L = 20 cm = 0.2 m, L = 42 cm = 0.42 m, v = 20 ms$$-$$1, m = 0.02 kg, d = 6 mm = 6 $$\times$$ 10$$-$$3 m
$$\therefore$$ $$A = \pi {r^2} = \pi {\left( {{d \over 2}} \right)^2} = \pi {\left( {{{6 \times {{10}^{ - 3}}} \over 2}} \right)^2}$$
$$ = \pi {(3 \times {10^{ - 3}})^2} = 9\pi \times {10^{ - 6}}{m^2}$$
On substituting values, we get
$$Y = {{m{v^2}L} \over {A{{(\Delta L)}^2}}} = {{0.02 \times {{(20)}^2} \times 0.42} \over {9\pi \times {{10}^{ - 6}} \times {{(0.2)}^2}}}$$
$$ \approx 3.0 \times {10^6}N{m^{ - 2}}$$
So, the closest value of Young's modulus is 106 Nm$$-$$2.
Comments (0)
