JEE MAIN - Physics (2019 - 8th April Morning Slot - No. 25)
Explanation
When rubber cord is stretched, then it stores potential energy and when released, this potential energy is given to the stone as kinetic energy.
_8th_April_Morning_Slot_en_25_1.png)
So, potential energy of stretched cord = kinetic energy of stone
$$ \Rightarrow {1 \over 2}Y{\left( {{{\Delta L} \over L}} \right)^2}A\,.\,L = {1 \over 2}m{v^2}$$
Here, $$\Delta$$L = 20 cm = 0.2 m, L = 42 cm = 0.42 m, v = 20 ms$$-$$1, m = 0.02 kg, d = 6 mm = 6 $$\times$$ 10$$-$$3 m
$$\therefore$$ $$A = \pi {r^2} = \pi {\left( {{d \over 2}} \right)^2} = \pi {\left( {{{6 \times {{10}^{ - 3}}} \over 2}} \right)^2}$$
$$ = \pi {(3 \times {10^{ - 3}})^2} = 9\pi \times {10^{ - 6}}{m^2}$$
On substituting values, we get
$$Y = {{m{v^2}L} \over {A{{(\Delta L)}^2}}} = {{0.02 \times {{(20)}^2} \times 0.42} \over {9\pi \times {{10}^{ - 6}} \times {{(0.2)}^2}}}$$
$$ \approx 3.0 \times {10^6}N{m^{ - 2}}$$
So, the closest value of Young's modulus is 106 Nm$$-$$2.
Comments (0)


