JEE MAIN - Physics (2019 - 8th April Morning Slot - No. 20)
_8th_April_Morning_Slot_en_20_1.png)
Explanation
There are two forces on slider.
Spring force = kx
where, k = spring constant.
As the slider is kept in a uniform magnetic field B = 0.1 T, hence it will experience a force, i.e.
Magnetic force = Bil
where, l = length of the strip.
Now, using
Fnet = ma
We have,
$$( - kx) + ( - Bil) = ma$$
$$ \Rightarrow - kx - Bil - ma = 0$$
$$ \Rightarrow - kx - {{{B^2}{l^2}} \over R}.\,v - ma = 0$$ [$$\because$$ $$i = {{Blv} \over R}$$]
and acceleration, $$a = {{{d^2}x} \over {d{t^2}}}$$
Hence, the modified equation becomes
$$ \Rightarrow {{m{d^2}x} \over {d{t^2}}} + {{{B^2}{l^2}} \over R}\left( {{{dx} \over {dt}}} \right) + kx = 0$$
This is the equation of damped simple harmonic motion.
So, amplitude of oscillation varies with time as
$$A = {A_e}^{ - {{{B^2}{l^2}} \over {2Rm}}.\,t}$$
Now, when amplitude is $${{{A_0}} \over e}$$, then
$${{{A_0}} \over e} = {{{A_0}} \over {{e^{{{{B^2}{l^2}} \over {2Rm}}.\,t}}}}$$ (as given)
$$ \Rightarrow \left( {{{{B^2}{l^2}} \over {2Rm}}} \right)t = 1$$ or $$t = {{2Rm} \over {{B^2}{l^2}}}$$
According to the question, magnetic field B = 0.1 T, mass of strip m = 50 $$\times$$ 10$$-$$3 kg, resistance R = 10 $$\Omega$$, l = 10 cm = 10 $$\times$$ 10$$-$$2 m
$$\therefore$$ $$t = {{2Rm} \over {{B^2}{l^2}}} = {{2 \times 10 \times 50 \times {{10}^{ - 3}}} \over {{{(0.1)}^2} \times {{(10 \times {{10}^{ - 2}})}^2}}}$$
$$ = {1 \over {{{10}^{ - 4}}}} = 10000$$ s
Given, spring constant, k = 0.5 Nm$$-$$1
Also, time period of oscillation is
$$T = 2\pi \sqrt {{m \over k}} = 2\pi \sqrt {{{50 \times {{10}^{ - 3}}} \over {0.5}}} = {{2\pi } \over {\sqrt {10} }} \approx 2s$$
So, number of oscillations is
$$N = {t \over T} = {{10000} \over 2} = 5000$$
Comments (0)
