JEE MAIN - Physics (2019 - 8th April Morning Slot - No. 10)
_8th_April_Morning_Slot_en_10_1.png)
Explanation
Net force on mass M at position B towards centre of circle is
$${F_{BO\,net}} = {F_{BD}} + {F_{BA}}\sin 45^\circ + {F_{BC}}\sin 45^\circ $$
$$ = {{G{M^2}} \over {{{(\sqrt 2 a)}^2}}} + {{G{M^2}} \over {{a^2}}}\left( {{1 \over {\sqrt 2 }}} \right) + {{G{M^2}} \over {{a^2}}}\left( {{1 \over {\sqrt 2 }}} \right)$$
[where, diagonal length BD is $$\sqrt2$$a]
$$ = {{G{M^2}} \over {2{a^2}}} + {{G{M^2}} \over {{a^2}}}\left( {{2 \over {\sqrt 2 }}} \right) = {{G{M^2}} \over {{a^2}}}\left( {{1 \over 2} + \sqrt 2 } \right)$$
This force will act as centripetal force.
Distance of particle from centre of circle is $${a \over {\sqrt 2 }}$$.
Here, $${F_{centripetal}} = {{M{v^2}} \over r} = {{M{v^2}} \over {{a \over {\sqrt 2 }}}} = {{\sqrt 2 M{v^2}} \over a}$$ ($$\because$$ $$r = {a \over {\sqrt 2 }}$$)
So, for rotation about the centre,
$${F_{centripetal}} = {F_{BO(net)}}$$
$$ \Rightarrow \sqrt 2 {{M{v^2}} \over a} = {{G{M^2}} \over {{a^2}}}\left( {{1 \over 2} + \sqrt 2 } \right)$$
$$ \Rightarrow {v^2} = {{GM} \over a}\left( {1 + {1 \over {2\sqrt 2 }}} \right) = {{GM} \over a}(1.35)$$
$$ \Rightarrow v = 1.16\sqrt {{{GM} \over a}} $$
Comments (0)
