JEE MAIN - Physics (2019 - 12th January Evening Slot - No. 3)
Two particles A, B are moving on two concentric circles of radii R1 and R2 with equal angular speed $$\omega $$. At t = 0, their positions and direction of motion are shown in the figure. :
The relative velocity $${\overrightarrow V _A} - {\overrightarrow V _B}$$ at t = $${\pi \over {2\omega }}$$ is given by :
_12th_January_Evening_Slot_en_3_1.png)
The relative velocity $${\overrightarrow V _A} - {\overrightarrow V _B}$$ at t = $${\pi \over {2\omega }}$$ is given by :
$$ - \omega \left( {{R_1} + {R_2}} \right)\,\widehat i$$
$$\omega \left( {{R_2} - {R_1}} \right)\,\widehat i$$
$$\omega \left( {{R_1} + {R_2}} \right)\,\widehat i$$
$$\omega \left( {{R_1} - {R_1}} \right)\,\widehat i$$
Explanation
_12th_January_Evening_Slot_en_3_2.png)
$$\theta $$ = $$\omega $$t = $$\omega $$ $${\pi \over {2\omega }}$$ = $${\pi \over 2}$$
$$\overrightarrow V $$A $$-$$ $$\overrightarrow V $$S = $$\omega $$R1($$-$$$$\widehat i$$) $$-$$ $$\omega $$R2($$-$$i)
Comments (0)
