JEE MAIN - Physics (2019 - 12th January Evening Slot - No. 26)
_12th_January_Evening_Slot_en_26_1.png)
Explanation
Phase difference between I2 and V, i.e. C $$-$$ R2 circuit is given by
$$\tan \phi = {{{X_C}} \over {{R_2}}} \Rightarrow \tan \phi = {1 \over {C\omega {R_2}}}$$
Substituting the given values, we get
$$\tan \phi = {1 \over {{{\sqrt 3 } \over 2} \times {{10}^{ - 6}} \times 100 \times 20}} = {{{{10}^3}} \over {\sqrt 3 }}$$
$$\therefore$$ $$\phi$$1 is nearly 90$$^\circ$$.
Phase difference between I1 and V, i.e. in L $$-$$ R1 circuit is given by
$$\tan {\phi _2} = - {{{X_L}} \over {{R_1}}} = - {{L\omega } \over R}$$
Substituting the given values, we get
$$\tan {\phi _2} = - {{{{\sqrt 3 } \over {10}} \times 100} \over {10}} = - \sqrt 3 $$
As, $$\tan {\phi _2} = - \sqrt 3 $$
$$\therefore$$ $${\phi _2} = 120^\circ $$
Now, phase difference between I1 and I2 is
$$\Delta \phi = {\phi _2} - {\phi _1} = 120^\circ - 90^\circ = 30^\circ $$
Comments (0)
