JEE MAIN - Physics (2019 - 12th April Morning Slot - No. 23)

A circular disc of radius b has a hole of radius a at its centre (see figure). If the mass per unit area of the disc varies as $$\left( {{{{\sigma _0}} \over r}} \right)$$ , then the radius of gyration of the disc about its axis passing through the centre is: JEE Main 2019 (Online) 12th April Morning Slot Physics - Rotational Motion Question 147 English
$$\sqrt {{{{a^2} + {b^2} + ab} \over 2}} $$
$$\sqrt {{{a + b} \over 3}} $$
$$\sqrt {{{{a^2} + {b^2} + ab} \over 3}} $$
$$\sqrt {{{a + b} \over 2}} $$

Explanation

dI = (dm)r2
= ($$\sigma $$ dA)r2
= $$\left( {{{{\sigma _0}} \over r}2\pi dr} \right){r^2} = {\sigma _0}2\pi {r^2}dr$$

$$I = \int {DI} = \int\limits_a^b {{\sigma _0}2\pi {r^2}dr} $$
$$ = {\sigma _0}2\pi \left( {{{{b^3} - {a^3}} \over 3}} \right)$$

m = $$\int {dm = \int {\sigma dA = {\sigma _0}2\pi } } \int\limits_a^b {dr} $$

Comments (0)

Advertisement