JEE MAIN - Physics (2019 - 12th April Evening Slot - No. 18)

A transparent cube of side, made of a material of refractive index $$\mu $$2, is immersed in a liquid of refractive index $$\mu $$1($$\mu $$1 < $$\mu $$2). A ray is incident on the face AB at an angle $$\theta $$(shown in the figure). Total internal reflection takes place at point E on the face BC. JEE Main 2019 (Online) 12th April Evening Slot Physics - Geometrical Optics Question 158 English
Then $$\theta $$ must satisfy :
$$\theta > {\sin ^{ - 1}}\sqrt {{{\mu _2^2} \over {\mu _1^2}} - 1} $$
$$\theta < {\sin ^{ - 1}}\sqrt {{{\mu _2^2} \over {\mu _1^2}} - 1} $$
$$\theta < {\sin ^{ - 1}}{{{\mu _1}} \over {{\mu _2}}}$$
$$\theta > {\sin ^{ - 1}}{{{\mu _1}} \over {{\mu _2}}}$$

Explanation

JEE Main 2019 (Online) 12th April Evening Slot Physics - Geometrical Optics Question 158 English Explanation

By Snell’s law at AB

$$\mu $$1 sin $$\theta $$ = $$\mu $$2 sin $$\alpha $$

sin $$\alpha $$ = $${{{\mu _1}} \over {{\mu _2}}}\sin \theta $$ ....... (1)

Critical angle at BC,

$$\mu $$2 sin ic = $$\mu $$1 sin 90o

$$ \Rightarrow $$ sin ic = $${{{\mu _1}} \over {{\mu _2}}}$$ ..... (2)

For Total internal reflection to occur,

90o - $$\alpha $$ > ic

Taking sin both side,

sin(90o - $$\alpha $$) > sin ic

$$ \Rightarrow $$ cos $$\alpha $$ > $${{{\mu _1}} \over {{\mu _2}}}$$ (from equation 2)

$$ \Rightarrow $$ $$\sqrt {1 - {{\mu _1^2} \over {\mu _2^2}}{{\sin }^2}\theta } $$ > $${{{\mu _1}} \over {{\mu _2}}}$$ (from equation 1)

Squaring both sides, we get

$${1 - {{\mu _1^2} \over {\mu _2^2}}{{\sin }^2}\theta }$$ > $${{{\mu _1^2} \over {\mu _2^2}}}$$

$$ \Rightarrow $$ $${1 - {{\mu _1^2} \over {\mu _2^2}}}$$ > $${{{\mu _1^2} \over {\mu _2^2}}{{\sin }^2}\theta }$$

$$ \Rightarrow $$ $${{\mu _2^2} \over {\mu _1^2}} - 1$$ > $${{{\sin }^2}\theta }$$

$$ \Rightarrow $$ sin $$\theta $$ < $$\sqrt {{{\mu _2^2} \over {\mu _1^2}} - 1} $$

$$ \Rightarrow $$ $$\theta < {\sin ^{ - 1}}\sqrt {{{\mu _2^2} \over {\mu _1^2}} - 1} $$

Comments (0)

Advertisement