JEE MAIN - Physics (2019 - 11th January Morning Slot - No. 8)
A slab is subjected to two forces $$\overrightarrow {{F_1}} $$ and $$\overrightarrow {{F_2}} $$ of same magnitude F as shown in the figure. Force $$\overrightarrow {{F_2}} $$ is in XY-plane while force $$\overrightarrow {{F_1}} $$ acts along z = axis at the point $$\left( {2\overrightarrow i + 3\overrightarrow j } \right).$$. The moment of these forces about point O will be :
_11th_January_Morning_Slot_en_8_1.png)
_11th_January_Morning_Slot_en_8_1.png)
$$\left( {3\widehat i - 2\widehat j - 3\widehat k} \right)F$$
$$\left( {3\widehat i + 2\widehat j - 3\widehat k} \right)F$$
$$\left( {3\widehat i + 2\widehat j + 3\widehat k} \right)F$$
$$\left( {3\widehat i - 2\widehat j + 3\widehat k} \right)F$$
Explanation
To determine the moment of the forces about point O, we need to calculate the moments of each force and then combine them vectorially.
First, consider force $$\overrightarrow{F_1}$$. This force acts along the z-axis at the point $$(2\overrightarrow{i} + 3\overrightarrow{j})$$.
The position vector of the point of application of $$\overrightarrow{F_1}$$ relative to the origin O is:
$$\overrightarrow{r_1} = 2\overrightarrow{i} + 3\overrightarrow{j}$$Since $$\overrightarrow{F_1}$$ acts along the z-axis, we can express it as:
$$\overrightarrow{F_1} = F\overrightarrow{k}$$The moment of force $$\overrightarrow{F_1}$$ about point O is given by the cross product:
$$\overrightarrow{M_1} = \overrightarrow{r_1} \times \overrightarrow{F_1}$$Substitute the values:
$$\overrightarrow{M_1} = (2\overrightarrow{i} + 3\overrightarrow{j}) \times F\overrightarrow{k}$$Compute the cross product:
$$\overrightarrow{M_1} = 2F(\overrightarrow{i} \times \overrightarrow{k}) + 3F(\overrightarrow{j} \times \overrightarrow{k})$$ $$\overrightarrow{M_1} = 2F(-\overrightarrow{j}) + 3F\overrightarrow{i}$$ $$\overrightarrow{M_1} = -2F\overrightarrow{j} + 3F\overrightarrow{i}$$So, the moment due to force $$\overrightarrow{F_1}$$ is:
$$\overrightarrow{M_1} = 3F\overrightarrow{i} - 2F\overrightarrow{j}$$Torque for F2 force
$${\overrightarrow F _2}$$ = $${F \over 2}\left( { - \widehat i} \right) + {{F\sqrt 3 } \over 2}\left( { - \widehat j} \right)$$
$${\overrightarrow r _1} = 0\widehat i + 6\widehat j$$
$${\overrightarrow \tau _{_{{F_2}}}} = \overrightarrow {{r_1}} \times \overrightarrow {{F_1}} = 3F\widehat k$$
$${\overrightarrow \tau _{net}} = {\overrightarrow \tau _{{F_1}}} + {\overrightarrow \tau _{{f_2}}}$$
$$ = 3F\widehat i + 2F\left( { - \widehat j} \right) + 3F\left( {\widehat k} \right)$$
Comments (0)
