JEE MAIN - Physics (2019 - 11th January Evening Slot - No. 27)

The region between y = 0 and y = d contains a magnetic field $$\overrightarrow B = B\widehat z$$. A particle of mass m and charge q enters the region with a velocity $$\overrightarrow v = v\widehat i.$$ If d $$=$$ $${{mv} \over {2qB}},$$ the acceleration of the charged particle at the point of its emergence at the other side is :
$${{qvB} \over m}\left( -{{{\sqrt 3 } \over 2}\widehat i - {1 \over 2}\widehat j} \right)$$
$${{qvB} \over m}\left( {{1 \over 2}\widehat i - {{\sqrt 3 } \over 2}\widehat j} \right)$$
$${{qvB} \over m}\left( {{{ - \widehat j + \widehat i} \over {\sqrt 2 }}} \right)$$
$${{qvB} \over m}\left( {{{\widehat j + \widehat i} \over {\sqrt 2 }}} \right)$$

Explanation

JEE Main 2019 (Online) 11th January Evening Slot Physics - Magnetic Effect of Current Question 161 English Explanation

Here R = $${{mv} \over {qB}}$$ = 2d

cos $$\theta $$ = $${{{R \over 2}} \over R}$$ = $${1 \over 2}$$

$$ \Rightarrow $$ $$\theta $$ = 60o

Acceleration of the charged particle at the point of its emergence,

$$\overrightarrow {{a_c}} = {a_{{c_x}}}\left( { - \widehat i} \right) + {a_{{c_y}}}\left( { - \widehat j} \right)$$

= $${a_c}\cos 30^\circ \left( { - \widehat i} \right) + {a_c}\sin 30^\circ \left( { - \widehat j} \right)$$

= $${a_c}\left( {{{\sqrt 3 } \over 2}\left( { - \widehat i} \right) + {1 \over 2}\left( { - \widehat j} \right)} \right)$$

= $${{qvB} \over m}\left( { - {{\sqrt 3 } \over 2}\widehat i - {1 \over 2}\widehat j} \right)$$

Comments (0)

Advertisement