JEE MAIN - Physics (2018 - 15th April Evening Slot - No. 22)

The characteristic distance at which quantum gravitational effects are significant, the Planck length, can be determined from a suitable combination of the fundamental physical constants G, h and c.

Which of the following correctly gives the Planck length ?
G $$\hbar $$2 c3
G2 $$\hbar $$ c
$${G^{{\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}{\hbar ^2}c$$
$${\left( {{{G\hbar } \over {{c^3}}}} \right)^{{\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}$$

Explanation

Plank length,

$$\ell $$ = k Gp $$\hbar $$q Cr

[ Mo L To] = [ M$$-$$1 L3 T$$-$$2 ]p [ M L2 T$$-$$1] q [ L T$$-$$1]r

[Mo L To ] = [M$$-$$p + q L(3p + 2q + r) T$$-$$(2p + q + r)]

Comparing both sides,

$$-$$ p + q = 0

3p + 2q + r = 1

$$-$$ (2p + q + r) = 0

Solving those equation we get,

p = $${1 \over 2},$$ q = $${1 \over 2},$$ $$r = - {3 \over 2}$$

$$\therefore\,\,\,$$ $$\ell $$ = k G$${^{{1 \over 2}}}$$ $${\hbar ^{{1 \over 2}}}$$ $${C^{ - {3 \over 2}}}$$

= $${\left( {{{G\hbar } \over {{C^3}}}} \right)^{{1 \over 2}}}$$

(assume k = 1)

Comments (0)

Advertisement