JEE MAIN - Physics (2018 - 15th April Evening Slot - No. 17)

Two simple harmonic motions, as shown below, are at right angles. They are combined to form Lissajous figures.
x(t) = A sin (at + $$\delta $$)
y(t) = B sin (bt)

Identify the correct match below.
Parameters   A $$ \ne $$ B, a = b; $$\delta $$ = 0;
Curve    Parabola
Parameters    A = B, a = b; $$\delta $$ = $${\raise0.5ex\hbox{$\scriptstyle \pi $} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}$$
Curve    Line
Parameters    A $$ \ne $$ B, a = b; $$\delta $$ = $${\raise0.5ex\hbox{$\scriptstyle \pi $} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}$$
Curve    Ellipse
Parameters    A = B, a = 2b; $$\delta $$ = $${\raise0.5ex\hbox{$\scriptstyle \pi $} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}$$
Curve    Circle

Explanation

The given simple harmonic motions to form Lissajous figures are $$x(t) = A\sin (at + \delta )$$ and $$y(t) = B\sin (bt)$$.

For parabola, conditions should be

A = B or A $$\ne$$ B, a = 2b, $$\delta$$ = $$\pi$$/2

For line, conditions should be

A = B, a = b, $$\delta$$ = $$\pi$$

For circle, condition should be

A = B, a = b; $$\delta$$ = $$\pi$$/2

For ellipse, condition should be

A $$\ne$$ B, a = b; $$\delta$$ = $$\pi$$/2

Therefore, we obtain an ellipse.

Comments (0)

Advertisement