JEE MAIN - Physics (2018 - 15th April Evening Slot - No. 14)
A parallel plate capacitor with area 200 cm2 and separation between the plates 1.5 cm, is connected across a battery of emf V. If the force of attraction between the plates is $$25 \times {10^{ - 6}}N,$$ the value of V is approximately : $$\left( {{ \in _o} = 8.85 \times {{10}^{ - 12}}{{{C^2}} \over {N.{m^2}}}} \right)$$
250 V
100 V
300 V
150 V
Explanation
Given area of Parallel plate capacitor, A = 200 cm2
Separation between the plates, d = 1.5 cm
Force of attraction between the plates, F = 25 Ć 10ā6 N
F = QE
$$ \Rightarrow $$ F = $${{{Q^2}} \over {2A{ \in _0}}}$$
[ As E due to parallel plate = $${\sigma \over {2{ \in _0}}} = {Q \over {2A{ \in _0}}}$$]
Also we know, Q = CV = $${{{ \in _0}AV} \over d}$$
$$ \therefore $$ F = $${{{{\left( {{ \in _0}AV} \right)}^2}} \over {{d^2} \times 2A{ \in _0}}}$$
$$ \Rightarrow $$ V = d$$\sqrt {{{2F} \over {{ \in _0}A}}} $$
$$ \Rightarrow $$ V = $$1.5 \times {10^{ - 2}}\sqrt {{{2 \times 25 \times {{10}^{ - 6}}} \over {8.85 \times {{10}^{ - 12}} \times 2 \times {{10}^{ - 2}}}}} $$
= $$1.5 \times {10^{ - 2}}\sqrt {{{25} \over {8.85}}} $$ = 250 V
Separation between the plates, d = 1.5 cm
Force of attraction between the plates, F = 25 Ć 10ā6 N
F = QE
$$ \Rightarrow $$ F = $${{{Q^2}} \over {2A{ \in _0}}}$$
[ As E due to parallel plate = $${\sigma \over {2{ \in _0}}} = {Q \over {2A{ \in _0}}}$$]
Also we know, Q = CV = $${{{ \in _0}AV} \over d}$$
$$ \therefore $$ F = $${{{{\left( {{ \in _0}AV} \right)}^2}} \over {{d^2} \times 2A{ \in _0}}}$$
$$ \Rightarrow $$ V = d$$\sqrt {{{2F} \over {{ \in _0}A}}} $$
$$ \Rightarrow $$ V = $$1.5 \times {10^{ - 2}}\sqrt {{{2 \times 25 \times {{10}^{ - 6}}} \over {8.85 \times {{10}^{ - 12}} \times 2 \times {{10}^{ - 2}}}}} $$
= $$1.5 \times {10^{ - 2}}\sqrt {{{25} \over {8.85}}} $$ = 250 V
Comments (0)
