JEE MAIN - Physics (2018 - 15th April Evening Slot - No. 12)
_15th_April_Evening_Slot_en_12_1.png)
Explanation
Let the distance QM = l and distance RM = x.
Time to reach from Q to R is $${t_1} = {{l - x} \over v}$$
Time to reach from R to P is $${t_2} = {{\sqrt {{x^2} + {d^2}} } \over {v/2}}$$
Therefore, $$t = {t_1} + {t_2} = {{l - x} \over v} + {{\sqrt {{x^2} + {d^2}} } \over {v/2}}$$
On differentiating, we get
$${{dt} \over {dx}} = {{0 - 1} \over v} + {1 \over {v/2}}{1 \over {2\sqrt {{x^2} + {d^2}} }} \times 2x$$
$$ \Rightarrow {{dt} \over {dx}} = {{ - 1} \over v} + {{2x} \over {v\sqrt {{x^2} + {d^2}} }}$$
Put $${{dt} \over {dx}} = 0$$, we get
$${{ - 1} \over v} + {{2x} \over {v\sqrt {{x^2} + {d^2}} }} = 0$$
$$ \Rightarrow {{2x} \over {v\sqrt {{x^2} + {d^2}} }} = {1 \over v}$$
$$ \Rightarrow 2x = \sqrt {{x^2} + {d^2}} \Rightarrow 4{x^2} = {x^2} + {d^2}$$
$$ \Rightarrow 3{x^2} = {d^2} \Rightarrow x = {d \over {\sqrt 3 }}$$
Therefore, the distance $$RM = x = {d \over {\sqrt 3 }}$$, the time taken to reach P is minimum.
Comments (0)
