JEE MAIN - Physics (2018 - 15th April Evening Slot - No. 11)
_15th_April_Evening_Slot_en_11_1.png)
Explanation
Centre of mass after the collision will be at O. Therefore,
$$2m{L \over 6} = m{L \over 3}$$
Now, using conservation of angular momentum, we get
$$2m{L \over 6} \times v + m{L \over 3} \times 2v = I\omega $$
Therefore,
$$2m{L \over 6} \times v + m{L \over 3} \times 2v = \left[ {8m{{{L^2}} \over {12}} + 2m{{\left( {{L \over 6}} \right)}^2} + m{{\left( {{L \over 3}} \right)}^2}} \right]\omega $$
$$ \Rightarrow \left( {{L \over 6} + {L \over 3}} \right)2mv = \left[ {8m{{{L^2}} \over {12}} + {{2m{L^2}} \over {36}} + {{m{L^2}} \over 9}} \right]\omega $$
$$ \Rightarrow {{3L} \over 6} \times 2mV = {5 \over 6}m{L^2}\omega $$
$$ \Rightarrow Lmv = {5 \over 6}m{L^2}\omega \Rightarrow \omega = {{6Lmv} \over {5m{L^2}}} \Rightarrow \omega = {6 \over 5}{v \over L}$$
Comments (0)
