JEE MAIN - Physics (2018 - 15th April Evening Slot - No. 10)
A thin rod MN, free to rotate in the vertical plane aboutthe fixed end N, is held horizontal. When the end M is released the speed of this end, when the rod makes an angle $$\alpha $$ with the horizontal, will be proportional to : (see figure)
_15th_April_Evening_Slot_en_10_1.png)
_15th_April_Evening_Slot_en_10_1.png)
$$\sqrt {\sin \alpha } $$
$${\sin \alpha }$$
$$\sqrt {\cos \alpha } $$
$${\cos \alpha }$$
Explanation
When the end M is released and rod makes angle $$\alpha$$ with horizontal, the displacement of centre of mass is $${L \over 2}\sin \alpha $$.
Now, we know $$mg{L \over 2}\sin \alpha = {1 \over 2}I{\omega ^2}$$
Here, $$I = {{m{L^2}} \over 3}$$; therefore,
$$mg{L \over 2}\sin \alpha = {1 \over 2}{{m{L^2}} \over 3}{\omega ^2}$$
$$ \Rightarrow {\omega ^2} = {{3g\sin \alpha } \over L} \Rightarrow \omega = \sqrt {{{3g\sin \alpha } \over L}} \Rightarrow \omega \propto \sqrt {\sin \alpha } $$
Comments (0)
