JEE MAIN - Physics (2018 (Offline) - No. 27)

An electron from various excited states of hydrogen atom emit radiation to come to the ground state. Let $${\lambda _n}$$, $${\lambda _g}$$ be the de Broglie wavelength of the electron in the nth state and the ground state respectively. Let $${\Lambda _n}$$ be the wavelength of the emitted photon in the transition from the nth state to the ground state. For large n, (A, B are constants)
$${\Lambda _n} \approx A + {B \over {\lambda _n^2}}$$
$${\Lambda _n} \approx A + B{\lambda _n}$$
$$\Lambda _n^2 \approx A + B\lambda _n^2$$
$$\Lambda _n^2 \approx \lambda$$

Explanation

We know,

Wavelength of emitted photon from n2 state to n1 state is

$${1 \over \lambda }$$  =  RZ2 $$\left( {{1 \over {n_1^2}} - {1 \over {n_2^2}}} \right)$$

Here electron comes from nth state to ground state (n = 1),

then the wavelength of photon is ,

$${1 \over {{\Lambda _n}}}$$  =  RZ2 $$\left( {{1 \over {{1^2}}} - {1 \over {{n^2}}}} \right)$$

$$ \Rightarrow $$$$\,\,\,$$ $$\Lambda $$n   =  $${1 \over {R{Z^2}}}{\left( {1 - {1 \over {{n^2}}}} \right)^{ - 1}}$$

As n is very large, so using binomial theorem

$$\Lambda $$n  =  $${1 \over {R{Z^2}}}\left( {1 + {1 \over {{n^2}}}} \right)$$

$$ \Rightarrow $$$$\,\,\,$$ $$\Lambda $$n =  $${1 \over {R{Z^2}}} + {1 \over {R{Z^2}}}\left( {{1 \over {{n^2}}}} \right)$$

We know,

$$\lambda $$n =  $${{2\pi r} \over n}$$

=  2$$\pi $$ $${\left( {{{{n^2}{h^2}} \over {4{\pi ^2}mZ{C^2}}}} \right)\times{{1 \over n}}}$$

$$\therefore\,\,\,$$ $$\lambda $$n $$ \propto $$ n

$$ \Rightarrow $$$$\,\,\,$$ n  =  K $$\lambda $$n

$$\therefore\,\,\,$$ $$\Lambda $$n  = $${1 \over {R{Z^2}}} + {1 \over {R{Z^2}}}\left( {{1 \over {{{\left( {K\,{\lambda _n}} \right)}^2}}}} \right)$$

Let A  =  $${1 \over {R{Z^2}}}$$  and   B  = $${1 \over {{K^2}R{Z^2}}}$$

$$ \Rightarrow $$$$\,\,\,$$ $$\Lambda $$n  =  A + $${B \over {\lambda _n^2}}$$

Comments (0)

Advertisement