JEE MAIN - Physics (2016 - 9th April Morning Slot - No. 26)

JEE Main 2016 (Online) 9th April Morning Slot Physics - Current Electricity Question 277 English
In the circuit shown, the resistance r is a variable resistance. If for r = fR, the heat generation in r is maximum then the value of f is :
$${1 \over 4}$$
$${1 \over 2}$$
$${3 \over 4}$$
1

Explanation

Here equivalent resistance

Req = R + $${{r \times R} \over {r + R}}$$

=  R + $${{f{R^2}} \over {fR + R}}$$

=   R + $${{fR} \over {f + 1}}$$

=   $${{\left( {2f + 1} \right)R} \over {\left( {f + 1} \right)}}$$

Circuit current,

$${\rm I}$$ = $${V \over {{{\mathop{\rm R}\nolimits} _{eq}}}}$$

=   $${{V\left( {f + 1} \right)} \over {{\mathop{\rm R}\nolimits} \left( {2f + 1} \right)}}$$

Current in the resistance r,

I = $${{\rm I} \over {f + 1}}$$ = $${V \over {R\left( {2f + 1} \right)}}$$

Heat generated in r,

H = $${\rm I}_2^2\,r$$

=  $${{{V^2}f} \over {R{{\left( {2f + 1} \right)}^2}}}$$

For maximum H,

$${{dH} \over {df}}$$ = 0

$$ \Rightarrow $$   $${{{V^2}} \over R}\left[ {{1 \over {{{\left( {2f + 1} \right)}^2}}} - {{4f} \over {{{\left( {2f + 1} \right)}^3}}}} \right]$$ = 0

$$ \Rightarrow $$   2f + 1 = 4f

$$ \Rightarrow $$   2f = 1

$$ \Rightarrow $$   f = $${1 \over 2}$$

Comments (0)

Advertisement