JEE MAIN - Physics (2016 - 9th April Morning Slot - No. 10)

When photons of wavelength $${\lambda _1}$$ are incident on an isolated sphere, the corresponding stopping potential is found to be V. When photons of wavelength $${\lambda _2}$$ are used, the corresponding stopping potential was thrice that of the above value. If light of wavelength $${\lambda _3}$$ is used then find the stopping potential for this case :
$${{hc} \over e}\left[ {{1 \over {{\lambda _3}}} - {1 \over {{\lambda _2}}} - {1 \over {{\lambda _1}}}} \right]$$
$${{hc} \over e}\left[ {{1 \over {{\lambda _3}}} + {1 \over {{\lambda _2}}} - {1 \over {{\lambda _1}}}} \right]$$
$${{hc} \over e}\left[ {{1 \over {{\lambda _3}}} + {1 \over {2{\lambda _2}}} - {3 \over {2{\lambda _1}}}} \right]$$
$${{hc} \over e}\left[ {{1 \over {{\lambda _3}}} + {1 \over {2{\lambda _2}}} - {1 \over {{\lambda _1}}}} \right]$$

Explanation

We know,

Einstein's photoelectric equation,

$$eV = {{hc} \over \lambda } - {\phi _0}$$

and $${\phi _0}$$, $${{hc} \over {{\lambda _0}}}$$, where $${{\lambda _0}}$$ is the threashhold wavelength.

$$ \therefore $$   In first case,

eV $$ = {{hc} \over {{\lambda _1}}} - {{hc} \over {{\lambda _0}}}$$      . . .(1)

and in second case,

3 eV $$ = {{hc} \over {{\lambda _2}}} - {{hc} \over {{\lambda _0}}}$$       . . .(2)

Now, let slopping potential = V1 when light of wavelength $$\lambda $$3 is used then,

eV1 $$ = {{hc} \over {{\lambda _3}}} - {{hc} \over {{\lambda _0}}}$$       . . .(3)

From (1) and (2) get,

$$3\left( {{{hc} \over {{\lambda _1}}} - {{hc} \over {{\lambda _0}}}} \right) = {{hc} \over {{\lambda _2}}} - {{hc} \over {{\lambda _0}}}$$

$$ \Rightarrow $$   $${{3hc} \over {{\lambda _1}}}$$ $$-$$ $${{hc} \over {{\lambda _2}}}$$ $$=$$ $${{2hc} \over {{\lambda _0}}}$$

$$ \Rightarrow $$   $${{hc} \over {{\lambda _0}}}$$ $$=$$ $${{3hc} \over {2{\lambda _1}}}$$ $$-$$ $${{hc} \over {2{\lambda _2}}}$$

Putting this value of $${{hc} \over {{\lambda _0}}}$$ in equation 3,

eV1 $$ = {{hc} \over {{\lambda _3}}} - {{3hc} \over {2{\lambda _1}}} + {{hc} \over {2{\lambda _2}}}$$

$$ \Rightarrow $$   V1 $$ = {{hc} \over e}$$ $$\left[ {{1 \over {{\lambda _3}}} - {3 \over {2{\lambda _1}}} + {1 \over {2{\lambda _2}}}} \right]$$

Comments (0)

Advertisement