JEE MAIN - Physics (2016 - 10th April Morning Slot - No. 3)
In the figure shown ABC is a uniform wire. If centre of mass of wire lies vertically below point A, then $${{BC} \over {AB}}$$ is close to :
_10th_April_Morning_Slot_en_3_1.png)
_10th_April_Morning_Slot_en_3_1.png)
1.85
1.37
1.5
3
Explanation
_10th_April_Morning_Slot_en_3_2.png)
Here AB = x
and BC = y
and $$\lambda $$ = linear mass density.
As centre of mass is below point A, so horizontal distance of the centre of mass from B is = xcos60o = $${x \over 2}$$
$$ \therefore $$ XCM = $${x \over 2}$$ = $${{{m_1}{x_1} + {m_2}{x_2}} \over {{m_1} + {m_2}}}$$
$$ \Rightarrow $$ $${x \over 2}$$ = $${{\left( {\lambda x} \right)\left( {{x \over 2}} \right)\cos {{60}^o} + \left( {\lambda y} \right)\left( {{y \over 2}} \right)} \over {\lambda \left( {x + y} \right)}}$$
$$ \Rightarrow $$ $${x \over 2}$$ = $${{{{{x^2}} \over 4} + {{{y^2}} \over 2}} \over {x + y}}$$
$$ \Rightarrow $$ x2 + xy = $${{{x^2}} \over 2} + {y^2}$$
$$ \Rightarrow $$ x2 + 2xy $$-$$ 2y2 = 0
$$ \therefore $$ x = $${{ - 2y \pm \sqrt {{{\left( {2y} \right)}^2} - 4.1\left( { - 2{y^2}} \right)} } \over {2.1}}$$
= $${{ - 2y \pm \sqrt {12{y^2}} } \over 2}$$
= $$-$$ y $$ \pm $$ $$\sqrt 3 $$y
$${x \over y} \ne - \sqrt 3 - 1$$ as $${x \over y}$$ = positive.
$$ \therefore $$ $${x \over y}$$ = $$\sqrt 3 - 1$$
$$ \Rightarrow $$ $${y \over x}$$ = $${1 \over {\sqrt 3 - 1}} \times {{\sqrt 3 + 1} \over {\sqrt 3 + 1}}$$
= $${{\sqrt 3 + 1} \over 2}$$
= $${{2.732} \over 2}$$
= 1.366 $$ \simeq $$ 1.37
Comments (0)
