JEE MAIN - Physics (2016 - 10th April Morning Slot - No. 2)

A bottle has an opening of radius a and length b. A cork of length b and radius (a + $$\Delta $$a) where ($$\Delta $$a < < a) is compressed to fit into the opening completely (See figure). If the bulk modulus of cork is B and frictional coefficient between the bottle and cork is $$\mu $$ then the force needed to push the cork into the bottle is :

JEE Main 2016 (Online) 10th April Morning Slot Physics - Properties of Matter Question 226 English
($$\pi $$ $$\mu $$ B b) $$\Delta $$a
(2$$\pi $$ $$\mu $$ B b) $$\Delta $$a
($$\pi $$ $$\mu $$ B b) a
(4$$\pi $$ $$\mu $$ B b) $$\Delta $$a

Explanation

Bulk modulus, B  =  $${{\Delta P} \over {{{\Delta V} \over V}}}$$

Vi  =  $$\pi $$ (a + $$\Delta $$a)2b

Vf  =  $$\pi $$a2b

$$ \therefore $$   $$\Delta $$V = 2$$\pi $$ab$$\Delta $$a

$$ \therefore $$   $${{{\Delta V} \over V}}$$ = $${{2\pi ab\Delta a} \over {\pi {a^2}b}}$$ = $${{2\Delta a} \over a}$$

$$ \therefore $$   $$\Delta $$P = B $$ \times $$ $${{{\Delta V} \over V}}$$

      = B $$ \times $$ $${{2\Delta a} \over a}$$

Normal Force (N) = $$\Delta $$P $$ \times $$ A

       = B $$ \times $$ $${{2\Delta a} \over a}$$ $$ \times $$ (2$$\pi $$a)b

       =   4$$\pi $$B$$\Delta $$ab

$$ \therefore $$   Frictional force = $$\mu $$N = (4$$\pi $$$$\mu $$Bb)$$\Delta $$a

Comments (0)

Advertisement