JEE MAIN - Physics (2016 - 10th April Morning Slot - No. 1)
Consider an electromagnetic wave propagating in vacuum. Choose the correct
statement :
For an electromagnetic wave propagating in +x direction the electric field is $$\vec E = {1 \over {\sqrt 2 }}{E_{yz}}{\mkern 1mu} \left( {x,t} \right)\left( {\hat y - \hat z} \right)$$
and the magnetic field is $$\vec B = {1 \over {\sqrt 2 }}{B_{yz}}{\mkern 1mu} \left( {x,t} \right)\left( {\hat y + \hat z} \right)$$
and the magnetic field is $$\vec B = {1 \over {\sqrt 2 }}{B_{yz}}{\mkern 1mu} \left( {x,t} \right)\left( {\hat y + \hat z} \right)$$
For an electromagnetic wave propagating in +x direction the electric field is
$$\vec E = {1 \over {\sqrt 2 }}{E_{yz{\mkern 1mu} }}\left( {y,z,t} \right)\left( {\hat y + \hat z} \right)$$
and the magnetic field is $$\vec B = {1 \over {\sqrt 2 }}{B_{yz{\mkern 1mu} }}\left( {y,z,t} \right)\left( {\hat y + \hat z} \right)$$
and the magnetic field is $$\vec B = {1 \over {\sqrt 2 }}{B_{yz{\mkern 1mu} }}\left( {y,z,t} \right)\left( {\hat y + \hat z} \right)$$
For an electromagnetic wave propagating in + y direction the electric field is
$$\overrightarrow E = {1 \over {\sqrt 2 }}{E_{yz{\mkern 1mu} }}\left( {x,t} \right)\widehat y$$
and the magnetic field is $$\vec B = {1 \over {\sqrt 2 }}{B_{yz{\mkern 1mu} }}\left( {x,t} \right)\widehat z$$
and the magnetic field is $$\vec B = {1 \over {\sqrt 2 }}{B_{yz{\mkern 1mu} }}\left( {x,t} \right)\widehat z$$
For an electromagnetic wave propagating in + y direction the electric field is
$$\overrightarrow E = {1 \over {\sqrt 2 }}{E_{yz{\mkern 1mu} }}\left( {x,t} \right)\widehat z$$
and the magnetic field is $$\overrightarrow B = {1 \over {\sqrt 2 }}{B_{z{\mkern 1mu} }}\left( {x,t} \right)\widehat y$$
and the magnetic field is $$\overrightarrow B = {1 \over {\sqrt 2 }}{B_{z{\mkern 1mu} }}\left( {x,t} \right)\widehat y$$
Explanation
As wave is propagating in + x direction, then $$\overrightarrow E $$ and $$\overrightarrow B $$ should be function of $$\left( {x,t} \right)$$ and must be in y $$-$$ z plane.
Comments (0)
