JEE MAIN - Physics (2016 (Offline) - No. 20)

A pendulum clock loses $$12$$ $$s$$ a day if the temperature is $${40^ \circ }C$$ and gains $$4$$ $$s$$ a day if the temperature is $${20^ \circ }C.$$ The temperature at which the clock will show correct time, and the co-efficient of linear expansion $$\left( \alpha \right)$$ of the metal of the pendulum shaft are respectively :
$${30^ \circ }C;\,\,\alpha = 1.85 \times {10^{ - 3}}/{}^ \circ C$$
$${55^ \circ }C;\,\,\alpha = 1.85 \times {10^{ - 2}}/{}^ \circ C$$
$${25^ \circ }C;\,\,\alpha = 1.85 \times {10^{ - 5}}/{}^ \circ C$$
$${60^ \circ }C;\,\,\alpha = 1.85 \times {10^{ - 4}}/{}^ \circ C$$

Explanation

Time lost/gained per day $$ = {1 \over 2} \propto \Delta \theta \times 86400$$ second

$$12 = {1 \over 2}\alpha \left( {40 - \theta } \right) \times 86400\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( i \right)$$

$$4 = {1 \over 2}\alpha \left( {\theta - 20} \right) \times 86400\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( {ii} \right)$$

On dividing we get, $$\,\,\,3 = {{40 - \theta } \over {\theta - 20}}$$

$$3\theta - 60 = 40 - \theta $$

$$4\theta = 100 \Rightarrow \theta = {25^ \circ }C$$

Comments (0)

Advertisement