JEE MAIN - Physics (2016 (Offline) - No. 13)

The region between two concentric spheres of radii $$'a'$$ and $$'b',$$ respectively (see figure), have volume charge density $$\rho = {A \over r},$$ where $$A$$ is a constant and $$r$$ is the distance from the center. A such that the electric field in the region between the spheres will be constant, is :

JEE Main 2016 (Offline) Physics - Electrostatics Question 199 English
$${{2Q} \over {\pi \left( {{a^2} - {b^2}} \right)}}$$
$${{2Q} \over {\pi \,{a^2}}}$$
$${Q \over {2\pi \,{a^2}}}$$
$${Q \over {2\pi \,\left( {{b^2} - {a^2}} \right)}}$$

Explanation

JEE Main 2016 (Offline) Physics - Electrostatics Question 199 English Explanation

Applying Gauss's law

$$\oint {s\overrightarrow E .\overrightarrow {ds} } = {Q \over {{ \in _0}}}$$

$$\therefore$$ $$E \times 4\pi {r^2} = {{Q + 4\pi a{r^2} - 4\pi A{a^2}} \over {{ \in _0}}}$$

$$\rho = {{dr} \over {dv}}$$

$$Q = \rho 4\pi {r^2}$$

$$Q = \int\limits_a {{A \over r}} 4{\pi ^2}dr = 4\pi A\,\left[ {{r^2} - {a^2}} \right]$$

$$E = {1 \over {4\pi { \in _0}}}\left[ {{{Q - 4\pi A{a^2}} \over {{r^2}}} + 4\pi A} \right]$$

For $$E$$ to be independent of $$'r'$$

$$Q - 2\pi A{a^2} = 0$$

$$\therefore$$ $$A = {Q \over {2\pi {a^2}}}$$

Comments (0)

Advertisement