JEE MAIN - Physics (2015 (Offline) - No. 18)
A pendulum made of a uniform wire of cross sectional area $$A$$ has time period $$T.$$ When an additional mass $$M$$ is added to its bob, the time period changes to $${T_{M.}}$$ If the Young's modulus of the material of the wire is $$Y$$ then $${1 \over Y}$$ is equal to :
($$g=$$ $$gravitational$$ $$acceleration$$)
($$g=$$ $$gravitational$$ $$acceleration$$)
$$\left[ {1 - {{\left( {{{{T_M}} \over T}} \right)}^2}} \right]{A \over {Mg}}$$
$$\left[ {1 - {{\left( {{T \over {{T_M}}}} \right)}^2}} \right]{A \over {Mg}}$$
$$\left[ {{{\left( {{{{T_M}} \over T}} \right)}^2} - 1} \right]{A \over {Mg}}$$
$$\left[ {{{\left( {{{{T_M}} \over T}} \right)}^2} - 1} \right]{{Mg} \over A}$$
Explanation
As we know, time period, $$T = 2\pi \sqrt {{\ell \over g}} $$
When a additional mass $$M$$ is added then
$${T_M} = 2\pi \sqrt {{{\ell + \Delta \ell } \over g}} $$
$${{{T_M}} \over T} = \sqrt {{{\ell + \Delta \ell } \over \ell }} $$
or, $$\,\,{\left( {{{{T_M}} \over T}} \right)^2} = {{\ell + \Delta \ell } \over \ell }$$
or, $$\,\,{\left( {{{{T_M}} \over T}} \right)^2} = 1 + {{Mg} \over {Ay}}$$
$$\left[ \, \right.$$ as $$\left. {\Delta \ell = {{Mg\ell } \over {Ay}}\,} \right]$$
$$\therefore$$ $${1 \over y} = \left[ {{{\left( {{{{T_M}} \over T}} \right)}^2} - 1} \right]{A \over {Mg}}$$
When a additional mass $$M$$ is added then
$${T_M} = 2\pi \sqrt {{{\ell + \Delta \ell } \over g}} $$
$${{{T_M}} \over T} = \sqrt {{{\ell + \Delta \ell } \over \ell }} $$
or, $$\,\,{\left( {{{{T_M}} \over T}} \right)^2} = {{\ell + \Delta \ell } \over \ell }$$
or, $$\,\,{\left( {{{{T_M}} \over T}} \right)^2} = 1 + {{Mg} \over {Ay}}$$
$$\left[ \, \right.$$ as $$\left. {\Delta \ell = {{Mg\ell } \over {Ay}}\,} \right]$$
$$\therefore$$ $${1 \over y} = \left[ {{{\left( {{{{T_M}} \over T}} \right)}^2} - 1} \right]{A \over {Mg}}$$
Comments (0)
