JEE MAIN - Physics (2013 (Offline) - No. 24)

What is the minimum energy required to launch a satellite of mass $$m$$ from the surface of a planet of mass $$M$$ and radius $$R$$ in a circular orbit at an altitude of $$2R$$?
$${{5GmM} \over {6R}}$$
$${{2GmM} \over {3R}}$$
$${{GmM} \over {2R}}$$
$${{GmM} \over {3R}}$$

Explanation

Energy of the satellite on the surface of the planet

Ei = K.E + P.E = 0 + $$\left( { - {{GMm} \over R}} \right)$$ = $${ - {{GMm} \over R}}$$

Energy of the satellite at 2R distance from the surface of the planet while moving with velocity v

Ef = $${1 \over 2}m{v^2}$$ + $$\left( { - {{GMm} \over {R + 2R}}} \right)$$

In the orbital of planet, the centripetal force is provided by the gravitational force

$$\therefore$$ $${{m{v^2}} \over {R + 2R}} = {{GMm} \over {{{\left( {R + 2R} \right)}^2}}}$$

$$ \Rightarrow {v^2} = {{GM} \over {3R}}$$

$$\therefore$$ Ef = $${1 \over 2}m{v^2}$$ + $$\left( { - {{GMm} \over {R + 2R}}} \right)$$

$$ = {1 \over 2}m{{GM} \over {3R}} - {{GMm} \over {3R}}$$

= $$ - {{GMm} \over {6R}}$$

$$\therefore$$ Minimum energy required required to launch the satellite

= Ef - Ei

= $$ - {{GMm} \over {6R}}$$ - $$\left( { - {{GMm} \over R}} \right)$$

= $${{5GMm} \over {6R}}$$

Comments (0)

Advertisement