JEE MAIN - Physics (2011 - No. 15)
Explanation
We know that, equation for SHM along x-axis is given by $$x = A\sin (\omega t + \phi )$$
Let mean position for 1st particle is at x = 0
So, the SHM equation for 1st particle,
$${x_1} = A\sin (\omega t + {\phi _1})$$
Now, as the separation between mean positions of both the particle is x$_0$
Hence, the SHM equation for 2nd particle,
$${x_2} = {x_0} + A\sin (\omega t + {\phi _2})$$
Now, the separation between particles would be
$$\left| {{x_2} - {x_1}} \right| = {x_0} + A\sin (\omega t + {\phi _2}) - A\sin (\omega t + {\phi _1})$$
$$ = {x_0} + A\left[ {\sin (\omega t + {\phi _2}) - \sin (\omega t + {\phi _1})} \right]$$
We know,
$$\sin C - \sin D = 2\cos \left( {{{C + D} \over 2}} \right)\sin \left( {{{C - D} \over 2}} \right)$$
Hence,
$$\left| {{x_2} - {x_1}} \right| = {x_0} + 2A\cos \left( {\omega t + {{{\phi _1} + {\phi _2}} \over 2}} \right)\sin \left( {{{{\phi _2} - {\phi _1}} \over 2}} \right)$$
For maximum separation,
Let $$\cos \left( {\omega t + {{{\phi _1} + {\phi _2}} \over 2}} \right) = 1$$
So, $$\left| {{x_2} - {x_1}} \right| = {x_0} + 2A\sin \left( {{{{\phi _2} - {\phi _1}} \over 2}} \right)$$
Since, $$\left| {{x_2} - {x_1}} \right| = {x_0} + A$$ (given)
So, $${x_0} + A = {x_0} + 2A\sin \left( {{{{\phi _2} - {\phi _1}} \over 2}} \right)$$
$$ \Rightarrow \sin \left( {{{{\phi _2} - {\phi _1}} \over 2}} \right) = {1 \over 2}$$
$$ \Rightarrow {{{\phi _2} - {\phi _1}} \over 2} = {\pi \over 6}$$
$$ \Rightarrow {\phi _2} - {\phi _1} = {\pi \over 3}$$
Comments (0)
