JEE MAIN - Physics (2010 - No. 17)
Let $$C$$ be the capacitance of a capacitor discharging through a resistor $$R.$$ Suppose $${t_1}$$ is the time taken for the energy stored in the capacitor to reduce to half its initial value and $${t_2}$$ is the time taken for the charge to reduce to one-fourth its initial value. Then the ratio $${t_1}/{t_2}$$ will be
$$1$$
$${1 \over 2}$$
$${1 \over 4}$$
$$2$$
Explanation
Initial energy of capacitor, $${E_1} = {{q_1^2} \over {2C}}$$
Final energy of capacitor, $${E_2} = {1 \over 2}{E_1} = {{q_1^2} \over {4C}} = {\left( {{{{{{q_1}} \over {\sqrt 2 }}} \over {2C}}} \right)^2}$$
$$\therefore$$ $${t_1}=$$ time for the charge to reduce to $${1 \over {\sqrt 2 }}$$ of its initial value
and $${t_2} = $$ time for the charge to reduce to $${1 \over 4}$$ of its initial value
We have, $${q_2} = {q_1}{e^{ - t/CR}}$$
$$ \Rightarrow \ln \left( {{{{q_2}} \over {{q_1}}}} \right) = - {t \over {CR}}$$
$$\therefore$$$$\ln \left( {{1 \over {\sqrt 2 }}} \right) = {{ - {t_1}} \over {CR}}...\left( 1 \right)$$
and $$\ln \left( {{1 \over 4}} \right) = {{ - {t_2}} \over {CR}}\,\,...\left( 2 \right)$$
By $$(1)$$ and $$(2),$$ $${{{t_1}} \over {{t_2}}} = {{\ln \left( {{1 \over {\sqrt 2 }}} \right)} \over {\ln \left( {{1 \over 4}} \right)}}$$
$$ = {1 \over 2}{{\ln \left( {{1 \over 2}} \right)} \over {2\ln \left( {{1 \over 2}} \right)}} = {1 \over 4}$$
Final energy of capacitor, $${E_2} = {1 \over 2}{E_1} = {{q_1^2} \over {4C}} = {\left( {{{{{{q_1}} \over {\sqrt 2 }}} \over {2C}}} \right)^2}$$
$$\therefore$$ $${t_1}=$$ time for the charge to reduce to $${1 \over {\sqrt 2 }}$$ of its initial value
and $${t_2} = $$ time for the charge to reduce to $${1 \over 4}$$ of its initial value
We have, $${q_2} = {q_1}{e^{ - t/CR}}$$
$$ \Rightarrow \ln \left( {{{{q_2}} \over {{q_1}}}} \right) = - {t \over {CR}}$$
$$\therefore$$$$\ln \left( {{1 \over {\sqrt 2 }}} \right) = {{ - {t_1}} \over {CR}}...\left( 1 \right)$$
and $$\ln \left( {{1 \over 4}} \right) = {{ - {t_2}} \over {CR}}\,\,...\left( 2 \right)$$
By $$(1)$$ and $$(2),$$ $${{{t_1}} \over {{t_2}}} = {{\ln \left( {{1 \over {\sqrt 2 }}} \right)} \over {\ln \left( {{1 \over 4}} \right)}}$$
$$ = {1 \over 2}{{\ln \left( {{1 \over 2}} \right)} \over {2\ln \left( {{1 \over 2}} \right)}} = {1 \over 4}$$
Comments (0)
