JEE MAIN - Physics (2009 - No. 4)

A transparent solid cylindrical rod has a refractive index of $${2 \over {\sqrt 3 }}.$$ It is surrounded by air. A light ray is incident at the mid-point of one end of the rod as shown in the figure. AIEEE 2009 Physics - Geometrical Optics Question 194 English

The incident angle $$\theta $$ for which the light ray grazes along the wall of the rod is :

$${\sin ^{ - 1}}\left( {{\raise0.5ex\hbox{$\scriptstyle {\sqrt 3 }$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}} \right)$$
$${\sin ^{ - 1}}\left( {{\raise0.5ex\hbox{$\scriptstyle 2$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle {\sqrt 3 }$}}} \right)$$
$${\sin ^{ - 1}}\left( {{1 \over {\sqrt 3 }}} \right)$$
$${\sin ^{ - 1}}\left( {{\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}} \right)$$

Explanation

AIEEE 2009 Physics - Geometrical Optics Question 194 English Explanation

Applying Snell's law at $$Q$$

$$n = {{\sin {{90}^ \circ }} \over {\sin C}} = {1 \over {\sin C}}$$

$$\therefore$$ $$\sin C = {1 \over n} = {{\sqrt 3 } \over 2}$$

$$\therefore$$ $$C = {60^ \circ }$$

Applying Snell's Law at $$P$$

$$n = {{\sin \theta } \over {\sin \left( {90 - C} \right)}}$$

$$ \Rightarrow \sin \theta = n \times \sin \left( {90 - C} \right);$$ from $$(1)$$

$$ \Rightarrow \sin \theta = n\,\cos C$$

$$\therefore$$ $$\theta = {\sin ^{ - 1}}\left[ {{2 \over {\sqrt 3 }} \times \cos {{60}^0}} \right]$$

or, $$\theta = {\sin ^{ - 1}}\left( {{1 \over {\sqrt 3 }}} \right)$$

Comments (0)

Advertisement