JEE MAIN - Physics (2006 - No. 46)

The total mechanical energy of the particle is $$2J.$$ Then, the maximum speed (in $$m/s$$) is
$${3 \over {\sqrt 2 }}$$
$${\sqrt 2 }$$
$${1 \over {\sqrt 2 }}$$
$$2$$

Explanation

Velocity is maximum when kinetic energy is maximum and when kinetic energy is maximum then potential energy should be minimum

For minimum potential energy,

$${{dV} \over {dx}} = 0 $$

$$\Rightarrow {x^3} - x = 0 $$

$$\Rightarrow x = \pm 1$$

$$ \Rightarrow$$ Min. Potential energy (P.E.) =$$ {1 \over 4} - {1 \over 2} = - {1 \over 4}J$$

$$K.E{._{\left( {\max .} \right)}} + P.E{._{\left( {\min .} \right)}} = 2\,$$ (Given)

$$\therefore$$ $$K.E{._{\left( {\max .} \right)}} = 2 + {1 \over 4} = {9 \over 4}$$

$$\therefore$$ $${1 \over 2}mv_{\max }^2$$ = $${9 \over 4}$$

$$ \Rightarrow {1 \over 2} \times 1 \times {v^2}_{\max .} = {9 \over 4}$$

$$ \Rightarrow {v_{\max }} = {3 \over {\sqrt 2 }}$$ m/s

Comments (0)

Advertisement