JEE MAIN - Physics (2005 - No. 40)

The function $${\sin ^2}\left( {\omega t} \right)$$ represents
a periodic, but not $$SHM$$ with a period $${\pi \over \omega }$$
a periodic, but not $$SHM$$ with a period $${{2\pi } \over \omega }$$
a $$SHM$$ with a period $${\pi \over \omega }$$
a $$SHM$$ with a period $${{2\pi } \over \omega }$$

Explanation

y = sin2$$\omega $$t

= $${{1 - \cos 2\omega t} \over 2}$$

$$ = {1 \over 2} - {1 \over 2}\cos \,2\omega t$$

$$ \therefore $$ Angular speed = 2$$\omega $$

$$ \therefore $$ Period (T) = $${{2\pi } \over {angular\,speed}}$$ = $${{2\pi } \over {2\omega }}$$ = $${\pi \over \omega }$$

So it is a periodic function.

As y = sin2$$\omega $$t

$${{dy} \over {dt}}$$ = 2$$\omega $$sin$$\omega $$t cos$$\omega $$t = $$\omega $$ sin2$$\omega $$t

$${{{d^2}y} \over {d{t^2}}}$$ = $$2{\omega ^2}$$ cos2$$\omega $$t which is not proportional to -y.

Hence it is is not SHM.

Comments (0)

Advertisement