JEE MAIN - Physics (2003 - No. 30)

Let $$\overrightarrow F $$ be the force acting on a particle having position vector $$\overrightarrow r ,$$ and $$\overrightarrow \tau $$ be the torque of this force about the origin. Then
$$\overrightarrow {r.} \overrightarrow \tau = 0\,\,$$ and $$\overrightarrow {F.} \overrightarrow \tau \ne 0\,\,$$
$$\overrightarrow {r.} \vec \tau \ne 0{\mkern 1mu} {\mkern 1mu} $$ and $$\overrightarrow {F.} \overrightarrow \tau = 0\,\,$$
$$\overrightarrow {r.} \vec \tau \ne 0{\mkern 1mu} $$ and $$\overrightarrow {F.} \overrightarrow \tau \ne 0$$
$$\overrightarrow {r.} \vec \tau = 0{\mkern 1mu} $$ and $$\overrightarrow {F.} \overrightarrow \tau = 0\,\,$$

Explanation

AIEEE 2003 Physics - Rotational Motion Question 216 English Explanation
As we know $$\overrightarrow \tau = \overrightarrow r \times \overrightarrow F $$

So the angle between $$\overrightarrow \tau $$ and $$\overrightarrow r $$ is $${90^ \circ }$$ and the angle between $$\overrightarrow t $$ and $$\overrightarrow F $$ is also $${90^ \circ }.$$

We also know that the dot product of two vectors which have an angle of $${90^ \circ }$$ between them is zero.

$$\therefore$$ $$\overrightarrow {r.} \vec \tau = 0{\mkern 1mu} $$ and $$\overrightarrow {F.} \overrightarrow \tau = 0\,\,$$

Therefore $$(d)$$ is the correct option.

Comments (0)

Advertisement