JEE MAIN - Physics (2003 - No. 29)

A circular disc $$X$$ of radius $$R$$ is made from an iron plate of thickness $$t,$$ and another disc $$Y$$ of radius $$4$$ $$R$$ is made from an iron plate of thickness $${t \over 4}.$$ Then the relation between the moment of inertia $${I_X}$$ and $${I_Y}$$ is
$${I_Y} = 32{I_X}$$
$${I_Y} = 16{I_X}$$
$${I_Y} = {I_X}$$
$${I_Y} = 64{I_X}$$

Explanation

We know that density $$\left( d \right) = {{mass\left( M \right)} \over {volume\left( V \right)}}$$

$$\therefore$$ Mass of disc $$M = d \times V = d \times \left( {\pi {R^2} \times t} \right).$$

The moment of inertia of any disc is $$I = {1 \over 2}M{R^2}$$

$$\therefore$$ $$I = {1 \over 2}\left( {d \times \pi {R^2} \times t} \right){R^2} = {{\pi d} \over 2}t \times {R^4}$$

$$\therefore$$ $${{{I_X}} \over {{I_Y}}} = {{{t_X}R_X^4} \over {{t_Y}R_Y^4}}$$

$$ = {{t \times {R^4}} \over {{t \over 4} \times {{\left( {4R} \right)}^4}}}$$

$$ = {1 \over {64}}$$

Comments (0)

Advertisement