JEE MAIN - Physics Hindi (2021 - 31st August Evening Shift - No. 4)
कथन I :
दो बल $$\left( {\overrightarrow P + \overrightarrow Q } \right)$$ और $$\left( {\overrightarrow P - \overrightarrow Q } \right)$$ जहाँ $$\overrightarrow P \bot \overrightarrow Q $$, जब एक कोण $$\theta$$1 पर कार्य करें, तो उनके परिणामी का परिमाण होता है $$\sqrt {3({P^2} + {Q^2})} $$, जब वे एक कोण $$\theta$$2 पर कार्य करें, तो उनके परिणामी का परिमाण हो जाता है $$\sqrt {2({P^2} + {Q^2})} $$. यह केवल तभी संभव है जब $${\theta _1} < {\theta _2}$$.
कथन II :
उपरोक्त स्थिति में.
$$\theta$$1 = 60$$^\circ$$ और $$\theta$$2 = 90$$^\circ$$
उपरोक्त कथनों के आलोक में, नीचे दिए गए विकल्पों में से सबसे उचित उत्तर चुनें :-
दो बल $$\left( {\overrightarrow P + \overrightarrow Q } \right)$$ और $$\left( {\overrightarrow P - \overrightarrow Q } \right)$$ जहाँ $$\overrightarrow P \bot \overrightarrow Q $$, जब एक कोण $$\theta$$1 पर कार्य करें, तो उनके परिणामी का परिमाण होता है $$\sqrt {3({P^2} + {Q^2})} $$, जब वे एक कोण $$\theta$$2 पर कार्य करें, तो उनके परिणामी का परिमाण हो जाता है $$\sqrt {2({P^2} + {Q^2})} $$. यह केवल तभी संभव है जब $${\theta _1} < {\theta _2}$$.
कथन II :
उपरोक्त स्थिति में.
$$\theta$$1 = 60$$^\circ$$ और $$\theta$$2 = 90$$^\circ$$
उपरोक्त कथनों के आलोक में, नीचे दिए गए विकल्पों में से सबसे उचित उत्तर चुनें :-
कथन I गलत है लेकिन कथन II सही है
कथन I और कथन II दोनों सही हैं
कथन I सही है लेकिन कथन II गलत है
कथन I और कथन II दोनों गलत हैं।
Comments (0)
