JEE MAIN - Physics Hindi (2019 - 8th April Evening Slot - No. 6)

एक विद्युतचुम्बकीय लहर का चुम्बकीय क्षेत्र दिया गया है :-

$$\mathop B\limits^ \to = 1.6 \times {10^{ - 6}}\cos \left( {2 \times {{10}^7}z + 6 \times {{10}^{15}}t} \right)\left( {2\mathop i\limits^ \wedge + \mathop j\limits^ \wedge } \right){{Wb} \over {{m^2}}}$$

संबंधित विद्युत क्षेत्र होगा :-
$$\mathop E\limits^ \to = 4.8 \times {10^2}\cos \left( {2 \times {{10}^7}z - 6 \times {{10}^{15}}t} \right)\left( -2{\mathop i\limits^ \wedge + \mathop {j}\limits^ \wedge } \right){V \over m}$$
$$\mathop E\limits^ \to = 4.8 \times {10^2}\cos \left( {2 \times {{10}^7}z - 6 \times {{10}^{15}}t} \right)\left( 2{\mathop i\limits^ \wedge + \mathop {j}\limits^ \wedge } \right){V \over m}$$
$$\mathop E\limits^ \to = 4.8 \times {10^2}\cos \left( {2 \times {{10}^7}z + 6 \times {{10}^{15}}t} \right)\left( {\mathop i\limits^ \wedge - \mathop {2j}\limits^ \wedge } \right){V \over m}$$
$$\mathop E\limits^ \to = 4.8 \times {10^2}\cos \left( {2 \times {{10}^7}z + 6 \times {{10}^{15}}t} \right)\left( -{\mathop i\limits^ \wedge + \mathop {2j}\limits^ \wedge } \right){V \over m}$$

Comments (0)

Advertisement