JEE MAIN - Physics Hindi (2018 - 15th April Morning Slot - No. 1)
$$\frac{\mathrm{E}_{\mathrm{O}}}{\mathrm{C}} \frac{(\hat{i}-\hat{j})}{\sqrt{2}}$$
$$\cos \left[10^{4} \frac{(\hat{i}+\hat{j})}{\sqrt{2}} \cdot \overrightarrow{\mathrm{r}}-\left(3 \times 10^{12}\right) \mathrm{t}\right]$$
$$\frac{\mathrm{E}_{\mathrm{O}}}{\mathrm{C}} \frac{(\hat{i}-\hat{j})}{\sqrt{2}}$$
$$\cos \left[10^{4} \frac{(\hat{i}-\hat{j})}{\sqrt{2}} \cdot \overrightarrow{\mathrm{r}}-\left(3 \times 10^{12}\right) \mathrm{t}\right]$$
$$\frac{E_{0}}{C} \hat{k}$$
$$\cos \left[10^{4} \frac{(\hat{i}+\hat{j})}{\sqrt{2}} \cdot \overrightarrow{\mathrm{r}}+\left(3 \times 10^{12}\right) \mathrm{t}\right]$$
$$\frac{E_{0}}{C} \frac{(\hat{i}+\hat{j}+\hat{k})}{\sqrt{3}}$$
$$\cos \left[10^{4} \frac{(\hat{i}+\hat{j})}{\sqrt{2}} \cdot \overrightarrow{\mathrm{r}}+\left(3 \times 10^{12}\right) \mathrm{t}\right]$$
Comments (0)
