JEE MAIN - Mathematics (2025 - 3rd April Morning Shift - No. 21)
All five letter words are made using all the letters A, B, C, D, E and arranged as in an English dictionary with serial numbers. Let the word at serial number $n$ be denoted by $\mathrm{W}_{\mathrm{n}}$. Let the probability $\mathrm{P}\left(\mathrm{W}_{\mathrm{n}}\right)$ of choosing the word $\mathrm{W}_{\mathrm{n}}$ satisfy $\mathrm{P}\left(\mathrm{W}_{\mathrm{n}}\right)=2 \mathrm{P}\left(\mathrm{W}_{\mathrm{n}-1}\right), \mathrm{n}>1$.
If $\mathrm{P}(\mathrm{CDBEA})=\frac{2^\alpha}{2^\beta-1}, \alpha, \beta \in \mathbb{N}$, then $\alpha+\beta$ is equal to :____________
Explanation
Firstly, by this rule, we note:
$ P(W_1) = p $
$ P(W_2) = 2p $
$ P(W_3) = 4p $
…
$ P(W_n) = 2^{n-1}p $
To find the initial probability $ p $, consider the total probability must sum to 1 across all 120 possible words (since $ 5! = 120 $):
$ \sum_{n=1}^{120} P(W_n) = 1 $
This is a geometric series sum where:
$ p(1 + 2 + 2^2 + \ldots + 2^{119}) = 1 $
Since the series sum $ 1 + 2 + 2^2 + \ldots + 2^{119} $ is equal to $ 2^{120} - 1 $, we have:
$ p(2^{120} - 1) = 1 \Rightarrow p = \frac{1}{2^{120} - 1} $
Thus, the probability for the $ n $-th word is:
$ P(W_n) = \frac{2^{n-1}}{2^{120} - 1} \quad \text{(i)} $
Next, determine the position of "CDBEA". Starting from the first letter:
Words beginning with 'A': $ 4! = 24 $
Words beginning with 'B': $ 4! = 24 $
Words beginning with 'C':
CA*: $ 3! = 6 $
CB*: $ 3! = 6 $
CDA$ **: 2! = 2 $
CDBA*: $ 1! = 1 $
Summing these, the position of "CDBEA" is the 64th word.
Substitute into equation (i):
$ P(\text{CDBEA}) = P(W_{64}) = \frac{2^{63}}{2^{120} - 1} $
Given $ P(\text{CDBEA}) = \frac{2^\alpha}{2^\beta - 1} $, we find:
$ \alpha = 63 $
$ \beta = 120 $
Thus, the sum $ \alpha + \beta = 63 + 120 = 183 $.
Comments (0)
