JEE MAIN - Mathematics (2025 - 3rd April Morning Shift - No. 14)
Explanation
To solve the given problem, let's start by considering the equation:
$ \int_0^x g(t) \, dt = x - \int_0^x \tan g(t) \, dt $
Differentiate both sides with respect to $ x $:
$ g(x) = 1 - xg(x) $
Rearranging gives:
$ g(x)(1 + x) = 1 \implies g(x) = \frac{1}{1 + x} $
Now, consider the differential equation:
$ \frac{dy}{dx} - y \tan x = 2(x+1) \sec x g(x) $
Substitute $ g(x) = \frac{1}{1 + x} $:
$ \frac{dy}{dx} - y \tan x = 2(x+1) \sec x \cdot \frac{1}{1 + x} $
This simplifies to:
$ \frac{dy}{dx} - y \tan x = 2 \sec x $
To solve this, we use an Integrating Factor (I.F):
$ \text{I.F} = e^{\int \tan x \, dx} = e^{-\ln \cos x} = \cos x $
Multiply the entire differential equation by the Integrating Factor:
$ \cos x \cdot \frac{dy}{dx} - y \cdot \sin x = 2 $
This implies:
$ \frac{d}{dx}(y \cos x) = 2 $
Integrate both sides with respect to $ x $:
$ y \cos x = \int 2 \, dx = 2x + c $
Given the initial condition $ y(0) = 0 $:
$ 0 \cdot 1 = 2 \cdot 0 + c \implies c = 0 $
Thus:
$ y \cos x = 2x $
Evaluate at $ x = \frac{\pi}{3} $:
$ y \cdot \frac{1}{2} = 2 \cdot \frac{\pi}{3} $
Solving for $ y $:
$ y = \frac{4 \pi}{3} $
Therefore, $ y\left(\frac{\pi}{3}\right) = \frac{4 \pi}{3} $.
Comments (0)
