JEE MAIN - Mathematics (2025 - 2nd April Morning Shift - No. 7)
Explanation
To determine the value of $ f(3) $ for the function $ f(x) = 2x^3 - 9ax^2 + 12a^2x + 1 $, where $ a > 0 $, we follow these steps:
First, find the critical points by setting the derivative equal to zero:
$ f'(x) = 6x^2 - 18ax + 12a^2 = 0 $
Factoring gives:
$ 6(x - a)(x - 2a) = 0 $
Thus, the critical points are $ x = a $ and $ x = 2a $.
$ x = a $ corresponds to a local maximum.
$ x = 2a $ corresponds to a local minimum.
According to the problem, $ p^2 = q $. Substituting $ p = a $ and $ q = 2a $ gives:
$ a^2 = 2a $
Solving for $ a $ gives:
$ a(a - 2) = 0 $
Since $ a > 0 $, we have $ a = 2 $.
Now, substitute $ a = 2 $ back into the function:
$ f(x) = 2x^3 - 18x^2 + 48x + 1 $
To find $ f(3) $:
$ f(3) = 2(3)^3 - 18(3)^2 + 48(3) + 1 $
Calculate each term:
$ 2(3)^3 = 54 $
$ 18(3)^2 = 162 $
$ 48(3) = 144 $
Thus,
$ f(3) = 54 - 162 + 144 + 1 = 37 $
So, $ f(3) = 37 $.
Comments (0)
