JEE MAIN - Mathematics (2025 - 2nd April Morning Shift - No. 20)
Explanation
Given:
$ \sum\limits_{k=1}^{12} a_{2k-1} = -\frac{72}{5} a_1 $
This means:
$ a_1 + a_3 + \cdots + a_{23} = -\frac{72}{5} a_1 $
Express each term in A.P.:
The general term of the A.P. is given by $ a_k = a + (k-1)d $. Thus, for the odd indices:
$ a_1 + (a + 2d) + (a + 4d) + \cdots + (a + 22d) $
Simplify the equation:
$ 12a + 2d(1 + 2 + \cdots + 11) = -\frac{72}{5} a $
Use the formula for sum of an arithmetic series (first 11 terms):
$ 1 + 2 + \cdots + 11 = \frac{11 \times 12}{2} = 66 $
So, the equation becomes:
$ 12a + 2d(66) = -\frac{72}{5} a $
$ 12a + 132d = -\frac{72}{5} a $
Solve for the relationship between $a$ and $d$:
$ 132d = -\frac{72}{5} a - 12a $
$ 132d = -\frac{132}{5} a $
So,
$ a = -5d \quad \text{(i)} $
Second condition:
$ \sum_{k=1}^{n} a_k = 0 \quad \Rightarrow \quad S_n = 0 $
$ \frac{n}{2} [2a + (n-1)d] = 0 $
$ 2a = -(n-1)d \quad \text{(ii)} $
Combine equation (i) and (ii):
Substitute $ a = -5d $ into equation (ii):
$ 2(-5d) = -(n-1)d $
$ -10d = -(n-1)d $
Therefore:
$ n-1 = 10 $
$ n = 11 $
Thus, $ n = 11 $.
Comments (0)
