JEE MAIN - Mathematics (2025 - 2nd April Morning Shift - No. 13)
Explanation
Projection of $\vec{a}$ on $\vec{v}$
$$\begin{aligned} & =\frac{\vec{a} \cdot \vec{v}}{|\vec{v}|}- \\ & \Rightarrow \frac{\vec{a} \cdot(2 \hat{i}-\hat{j}+2 \hat{k})}{3}=\frac{\vec{a} \cdot \hat{k}}{1}=\frac{\vec{a} \cdot(\hat{i}+2 \hat{j}-2 \hat{k})}{3} \\ & \Rightarrow \vec{a} \cdot(2 \hat{i}-\hat{j}-\hat{k})=0 \text { and } \vec{a} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})=0 \\ & \Rightarrow \vec{a} \perp(2 \hat{i}-\hat{j}-\hat{k}) \text { and }(\hat{i}+2 \hat{j}-5 \hat{k}) \\ & \Rightarrow \vec{a} \|(2 \hat{i}-\hat{j}-\hat{k}) \times(\hat{i}+2 \hat{j}-5 \hat{k}) \\ & \Rightarrow \vec{a}= \pm k\left|\begin{array}{ccc} \hat{i} & -\hat{j} & \hat{k} \\ 2 & -1 & -1 \\ 1 & 2 & -5 \end{array}\right|= \pm k(7 \hat{i}+9 \hat{j}-5 \hat{k}) \\ & \Rightarrow \text { Unit vector will be } \frac{1}{\sqrt{155}}(7 \hat{i}+9 \hat{j}+5 \hat{k}) \end{aligned}$$
Comments (0)
