JEE MAIN - Mathematics (2025 - 2nd April Evening Shift - No. 3)

The number of ways, in which the letters A, B, C, D, E can be placed in the 8 boxes of the figure below so that no row remains empty and at most one letter can be placed in a box, is : JEE Main 2025 (Online) 2nd April Evening Shift Mathematics - Permutations and Combinations Question 6 English
5880
840
960
5760

Explanation

JEE Main 2025 (Online) 2nd April Evening Shift Mathematics - Permutations and Combinations Question 6 English Explanation

Let $x, y, z$ be the number of box which are filled

$\Rightarrow 1 \leq x \leq 3,1 \leq y \leq 3,1 \leq z \leq 2$

$x$ $y$ $z$ Number of ways
3 1 1 ${ }^3 \mathrm{C}_3 \cdot{ }^3 \mathrm{C}_1 \cdot{ }^2 \mathrm{C}_1=6$
2 2 1 ${ }^3 \mathrm{C}_2 \cdot{ }^3 \mathrm{C}_2 \cdot{ }^2 \mathrm{C}_1=18$
1 3 1 ${ }^3 \mathrm{C}_1 \cdot{ }^3 \mathrm{C}_3 \cdot{ }^2 \mathrm{C}_1=6$
2 1 2 ${ }^3 C_2 \cdot{ }^3 C_1 \cdot{ }^2 C_2=9$
1 2 2 ${ }^3 \mathrm{C}_1 \cdot{ }^3 \mathrm{C}_2 \cdot{ }^2 \mathrm{C}_2=9$

Total ways $=(48)$ to fill boxes

Now to arrange $a, b, c, d$ and $e$

Number of ways will be 48.5! = 5760

Comments (0)

Advertisement