JEE MAIN - Mathematics (2025 - 2nd April Evening Shift - No. 19)

Let $\overrightarrow{\mathrm{a}}=2 \hat{i}-3 \hat{j}+\hat{k}, \quad \overrightarrow{\mathrm{~b}}=3 \hat{i}+2 \hat{j}+5 \hat{k}$ and a vector $\overrightarrow{\mathrm{c}}$ be such that $(\vec{a}-\vec{c}) \times \vec{b}=-18 \hat{i}-3 \hat{j}+12 \hat{k}$ and $\vec{a} \cdot \vec{c}=3$. If $\vec{b} \times \vec{c}=\vec{d}$, then $|\vec{a} \cdot \vec{d}|$ is equal to :
15
18
12
9

Explanation

To solve the problem, we start with the given equation:

$$(\vec{a} - \vec{c}) \times \vec{b} = -18 \hat{i} - 3 \hat{j} + 12 \hat{k}.$$

Expanding this, we have:

$$\vec{a} \times \vec{b} - \vec{c} \times \vec{b} = -18 \hat{i} - 3 \hat{j} + 12 \hat{k}.$$

Let $\vec{d} = \vec{c} \times \vec{b}$. Substituting this into the equation, we get:

$$\vec{a} \times \vec{b} + \vec{d} = -18 \hat{i} - 3 \hat{j} + 12 \hat{k}.$$

Now, we take the dot product of both sides with $\vec{a}$:

$$\vec{a} \cdot (\vec{a} \times \vec{b}) + \vec{a} \cdot \vec{d} = \vec{a} \cdot (-18 \hat{i} - 3 \hat{j} + 12 \hat{k}).$$

Since the dot product $\vec{a} \cdot (\vec{a} \times \vec{b})$ is zero (the dot product of any vector with the cross product of itself with another vector is zero), we have:

$$\vec{a} \cdot \vec{d} = -36 + 9 + 12 = -15.$$

Thus, the magnitude of $\vec{a} \cdot \vec{d}$ is:

$$|\vec{a} \cdot \vec{d}| = 15.$$

Comments (0)

Advertisement