JEE MAIN - Mathematics (2025 - 2nd April Evening Shift - No. 19)
Explanation
To solve the problem, we start with the given equation:
$$(\vec{a} - \vec{c}) \times \vec{b} = -18 \hat{i} - 3 \hat{j} + 12 \hat{k}.$$
Expanding this, we have:
$$\vec{a} \times \vec{b} - \vec{c} \times \vec{b} = -18 \hat{i} - 3 \hat{j} + 12 \hat{k}.$$
Let $\vec{d} = \vec{c} \times \vec{b}$. Substituting this into the equation, we get:
$$\vec{a} \times \vec{b} + \vec{d} = -18 \hat{i} - 3 \hat{j} + 12 \hat{k}.$$
Now, we take the dot product of both sides with $\vec{a}$:
$$\vec{a} \cdot (\vec{a} \times \vec{b}) + \vec{a} \cdot \vec{d} = \vec{a} \cdot (-18 \hat{i} - 3 \hat{j} + 12 \hat{k}).$$
Since the dot product $\vec{a} \cdot (\vec{a} \times \vec{b})$ is zero (the dot product of any vector with the cross product of itself with another vector is zero), we have:
$$\vec{a} \cdot \vec{d} = -36 + 9 + 12 = -15.$$
Thus, the magnitude of $\vec{a} \cdot \vec{d}$ is:
$$|\vec{a} \cdot \vec{d}| = 15.$$
Comments (0)
