JEE MAIN - Mathematics (2025 - 2nd April Evening Shift - No. 10)
Explanation
The relation $ R $ is defined on the set $ A = \{1, 2, 3, \ldots, 100\} $ such that $ R = \{(a, b): a = 2b + 1\} $. We need to find the largest integer $ k $ for which there exists a sequence of $ k $ ordered pairs from $ R $ where the second element of each pair is the first element of the next pair.
The sequence in terms of $ k $ is:
$ (a_1, a_2), (a_2, a_3), \ldots, (a_k, a_{k+1}) $
Here, each $ a_i $ satisfies the equation $ a_i = 2a_{i+1} + 1 $. Consequently, $ a_1 = 2a_2 + 1 $, making $ a_1 $ an odd number.
Let's examine the pattern:
$ a_2 = 2a_3 + 1 $, implying $ a_1 = 2(2a_3 + 1) + 1 = 4a_3 + 3 $.
$ a_3 = 2a_4 + 1 $, leading to $ a_1 = 4(2a_4 + 1) + 3 = 8a_4 + 7 $.
Continuing this pattern, we find:
$ a_k = 2a_{k+1} + 1 \implies a_1 = 2^k \cdot a_{k+1} + (2^k - 1) $
where $ a_{k+1} $ needs to be in set $ A $. This implies:
$ a_{k+1} = \frac{a_1 + 1 - 2^k}{2^k} $
Thus, $ 2^k \mid (a_1 + 1) $. The task is to find the highest $ k $ where $ 2^k $ divides any $ e_i $ in $ \{2, \ldots, 101\} $.
The largest power of 2 that divides an element within this range determines $ k $.
After computation, we find that $ k $ can be a maximum of 6 because $ 2^6 = 64 $ divides $ 95 + 1 = 96 $, but $ 2^7 = 128 $ does not divide any $ e_i $ for $ e_i \in A $. Therefore, the maximum $ k $ is 6.
The sequence corresponding to this maximum $ k $ is:
$ (95, 47), (47, 23), (23, 11), (11, 5), (5, 2) $
Comments (0)
