JEE MAIN - Mathematics (2025 - 29th January Morning Shift - No. 3)
Explanation
To solve the problem, we need to determine the determinant of matrix $ A $:
$ A = \begin{bmatrix} \log_5 128 & \log_4 5 \\ \log_5 8 & \log_4 25 \end{bmatrix} $
The determinant of $ A $, denoted as $|A|$, is calculated as:
$ |A| = (\log_5 128)(\log_4 25) - (\log_4 5)(\log_5 8) $
Evaluating each component:
$\log_5 128$ can be simplified using change of base formula:
$\log_5 128 = \frac{\log_{10}128}{\log_{10}5}$
$\log_4 5$ using change of base:
$\log_4 5 = \frac{\log_{10}5}{\log_{10}4}$
$\log_5 8$:
$\log_5 8 = \frac{\log_{10}8}{\log_{10}5}$
$\log_4 25$:
$\log_4 25 = \frac{\log_{10}25}{\log_{10}4}$
Now, substitute these values into $|A|$:
$ |A| = \left(\frac{\log_{10}128}{\log_{10}5}\right) \left(\frac{\log_{10}25}{\log_{10}4}\right) - \left(\frac{\log_{10}5}{\log_{10}4}\right) \left(\frac{\log_{10}8}{\log_{10}5}\right) $
Next, we find the cofactors of matrix $ A $:
$ A_{11} = \log_4 25 $
$ A_{12} = -\log_5 8 $
$ A_{21} = -\log_4 5 $
$ A_{22} = \log_5 128 $
Then, calculate matrix $ C $ whose elements are given by $ C_{ij} = \sum\limits_{k=1}^{2} a_{ik} A_{jk} $:
$ C_{11} = a_{11}A_{11} + a_{12}A_{12} = |A| = \frac{11}{2} $
$ C_{12} = a_{11}A_{21} + a_{12}A_{22} = 0 $
$ C_{21} = a_{21}A_{11} + a_{22}A_{12} = 0 $
$ C_{22} = a_{21}A_{21} + a_{22}A_{22} = |A| = \frac{11}{2} $
Thus, matrix $ C $ is:
$ C = \begin{bmatrix} \frac{11}{2} & 0 \\ 0 & \frac{11}{2} \end{bmatrix} $
To find $|C|$, we compute:
$ |C| = \left(\frac{11}{2}\right)\left(\frac{11}{2}\right) = \frac{121}{4} $
Finally, calculate $ 8|C| $:
$ 8|C| = 8 \times \frac{121}{4} = 242 $
Comments (0)
